Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(1): 133-141, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605809

RESUMO

Gastric cancer (GC) is a common malignant tumour of the digestive tract with a high mortality rate worldwide. However, many patients delay treatment due to the avoidance of the costly and painful procedure of gastroscopy. Therefore, an early convenient screening method is essential to improve the survival rate of GC patients. To address this issue, we constructed an electrochemical immunosensor supported by rhombohedral Cu3Pt and MoS2 nanoflowers (MoS2 NFs) for rapid, painless and quantitative detection of the GC biomarker in vitro. Here, pepsinogen I was employed as a model protein biomarker to analyse the performance of the immunosensor. The rhombohedral dodecahedral Cu3Pt nanoparticles decorated with MoS2-NFs were further functionalized; this allowed the constructed sensor to possess more nano- or micro-structures, thereby improving the detection sensitivity. In specific applications, the corresponding bioactive molecules can be flexibly captured. Under optimal conditions, the immunoassay showed a wide linear range from 500 pg mL-1 to 400 ng mL-1 and a low detection limit of 167 pg mL-1 (S/N = 3). This covers the critical value of 70 ng mL-1, and the results obtained from the analysis of human serum samples were on par with those from the enzyme immunoassay, suggesting significant potential for this new method in daily diagnosis.

2.
J Clin Lab Anal ; 35(12): e24091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34741352

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious and concealed virus that causes pneumonia, severe acute respiratory syndrome, and even death. Although the epidemic has been controlled since the development of vaccines and quarantine measures, many people are still infected, particularly in third-world countries. Several methods have been developed for detection of SARS-CoV-2, but owing to its price and efficiency, the immune strip could be a better method for the third-world countries. METHODS: In this study, two antibodies were linked to latex microspheres, using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, as the bridge to decrease the cost further and improve the detection performance. The specificity of the lateral flow immunoassay strip (LFIA) was tested by several common viruses and respiratory bacterial infections. Besides, the reproducibility and stability of the LFIAs were tested on the same batch of test strips. Under optimal conditions, the sensitivity of LFIA was determined by testing different dilutions of the positive specimens. RESULTS: The proposed LFIAs were highly specific, and the limit of detection was as low as 25 ng/mL for SARS-CoV-2 antigens. The clinical applicability was evaluated with 659 samples (230 positive and 429 negative samples) by using both LFIA and rRT-PCR. Youden's index (J) was used to assess the performance of these diagnostic tests. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. The sensitivity and specificity were 98.22% and 97.93%, respectively, and J is 0.9615. In addition, the consistency of our proposed LFIA was analyzed using Cohen's kappa coefficient (κ = 0.9620). CONCLUSION: We found disease stage, age, gender, and clinical manifestations have only a slight influence on the diagnosis. Therefore, the lateral flow immunoassay SARS-CoV-2 antigen test strip is suitable for point-of-care detection and provides a great application for SARS-CoV-2 epidemic control in the third-world countries.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Teste Sorológico para COVID-19/instrumentação , Carbodi-Imidas/química , Humanos , Imunoensaio/instrumentação , Látex/química , Metilaminas/química , Microscopia Eletrônica de Varredura , Microesferas , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Succinimidas/química
3.
Mikrochim Acta ; 187(10): 584, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990786

RESUMO

Using gold and magnetic nanoparticles co-decorated reduced graphene oxide-tetraethylenepentamine (rGO-TEPA/Au-MNPs) as the magnetic platform for capturing the primary antibody (Ab1), separation and preconcentration of immunocomplex, a novel homogeneous electrochemical immunosensor was successfully developed. The newly prepared magnetic rGO-TEPA/Au-MNPs, compared with MNPs, exhibited better stability and enhanced electrical conductivity attributed to rGO-TEPA, and showed higher biorecognition efficiency due to AuNPs. In addition, Au@PtNPs were prepared and modified with secondary antibody (Ab2) as an efficient signal probe for signal readout. Using carcinoembryonic antigen (CEA) as a model analyte, the prepared immunosensor demonstrated satisfactory properties like high stability, good repeatability and selectivity, wide linear range (5.0 pg mL-1~200.0 ng mL-1) as well as low detection limit (1.42 pg mL-1). The homogenous electrochemical immunosensor was applied to the detection of CEA in human serum and was found to exhibit good correlation with the reference method. Thus, the proposed rGO-TEPA/Au-MNPs-based homogenous immunoassay platform might open up a new way for biomarker diagnosis. Graphical Abstract.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Nanopartículas/química , Humanos
4.
Biosensors (Basel) ; 10(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183297

RESUMO

In this article, a highly sensitive label-free immunosensor based on a graphene oxide (GO)/Fe3O4/Prussian blue (PB) nanocomposite modified electrode was developed for the determination of human hepatitis B surface antigen (HBsAg). In this electrochemical immunoassay system, PB was used as a redox probe, while GO/Fe3O4/PB nanocomposites and AuNPs were prepared and coated on screen-printed electrodes to enhance the detection sensitivity and to immobilize the hepatitis B surface antibody (HBsAb). The immunosensor was fabricated based on the principle that the decrease in peak currents of PB is proportional to the concentration of HBsAg captured on the modified immunosensor. The experimental results revealed that the immunosensor exhibited a sensitive response to HBsAg in the range of 0.5 pg·mL-1 to 200 ng·mL-1, and with a low detection limit of 0.166 pg·mL-1 (S/N = 3). Furthermore, the proposed immunosensor was used to detect several clinical serum samples with acceptable results, and it also showed good reproducibility, selectivity and stability, which may have a promising potential application in clinical immunoassays.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ferrocianetos/química , Grafite/química , Antígenos de Superfície da Hepatite B/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Humanos
5.
Anal Chim Acta ; 1096: 34-43, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883589

RESUMO

A novel 3D paper-based microfluidic screen-printed electrode (SPE) composed of two layers was constructed by photolithography and screen-printing technology. Aldehyde functionalized hydrophilic zone of the counter and reference electrodes layer was prepared for glucose oxidase immobilization. Highly conductive prussian blue deposited reduced graphene oxide-tetraethylene pentamine (rGO-TEPA/PB) modified paper working electrode layer can be used as an electrochemical sensitive membrane for quantitative detection of hydrogen peroxide (H2O2), which was the enzyme-catalyzed reaction product. Therefore, this 3D paper-based microfluidic electrochemical biosensor can be used for quantitative detection of glucose. Under optimum conditions, the proposed biosensor can be used for quantitative determination of glucose over a wide linear range of 0.1 mM-25 mM with detection limit of 25 µM. Finally, the 3D paper-based microfluidic electrochemical biosensor was applied to determine glucose in human sweat and blood, and the obtained results were in good consistency with values measured by Roche's blood glucose meter. In addition, the proposed 3D paper-based electrochemical device showed good repeatability, stability, and anti-interference, which would be of great potential to monitor glucose in complex biological fluids.


Assuntos
Técnicas Biossensoriais/instrumentação , Glicemia/análise , Glucose/análise , Grafite/química , Técnicas Analíticas Microfluídicas/instrumentação , Suor/química , Técnicas Eletroquímicas/instrumentação , Enzimas Imobilizadas/química , Desenho de Equipamento , Etilenodiaminas/química , Glucose Oxidase/química , Humanos , Peróxido de Hidrogênio/análise , Limite de Detecção , Oxirredução , Papel , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...